3. ARTIFICIAL NEURAL NETWORKS FOR CHANNEL EQUALIZATION
3.1 Overview
In this chapter the use of NN for equalizer design is considered. A neural network is a powerful data modeling tool that is able to capture and represent complex input/output relationships. The motivation for the development of neural network technology stemmed from the desire to develop an artificial system that could perform "intelligent" tasks similar to those performed by the human brain. The structure and training of NN are described in this chapter.
3.2 Artificial Neuron

An artificial neuron, as conceptually shown in Figure 3.1, is structured to simulate a real neuron with inputs (x1, x2,...xn) entering the unit and then multiplied by corresponding weights (w1, w2,...wn) to indicate the strength of the "synapse." The weighted signals are summed to produce an overall unit activation value. This activation value is compared to a threshold level. If the activation level exceeds the threshold value, the Neuron passes on its data. This is the simplest form of the artificial neuron and is known as a perceptron.

[image: image1.wmf]å

=

=

r

i

i

i

W

O

n

1

 Figure 3.1 Artificial Neuron (Perceptron)

 3.3 Multilayer Perception

The single neuron described earlier can be structured to solve very simple problems however it will not suffice for any complex problems. The solution to complex problems involves the use of multiple neurons working together; this is known as a neural network. The artificial neuron is a simple element that can be made a part of a large collection of neurons in which each neuron’s output is the input to the next neuron in line. These collections of neurons usually form layers as shown in Figure 3.2. Although this multi-layer structure can take on virtually any shape, the most common structure is called a feed forward network and is pictured in Figure 3.2. The term feed forward comes from the pattern of information flow through the network. Data is transferred to the bottom layer, called the input layer, where it distributed forward to the next layer. This second layer, called a hidden layer, collects the information from the input layer, transforms the data according to some activation function, and passes the data forward to the next layer. The third layer, called the output layer, collects the information from the hidden layer, transforms the data a final time and then outputs the results.

[image: image12.png]oo0 Output Units
<« weights
O Q Q=) Hiddenurits
< weights

O /O O oo Input Units

 Figure 3.2 Multi-layer Perception

The 3-layer structure shown in Figure 3.2 is a standard feed forward network although many variations of this network exist. For example, feed forward networks may have 2 or more hidden layers, although the basic idea of any feed forward network is that information passes from bottom to top only feedforward networks may have any number of neurons per layer although it is very common for networks to have a pyramid shape in that the input layer is generally larger than the hidden layer which is larger than the output layer.

3.4 Types of Artificial Neural Networks

There are two types of artificial neural networks based on supervised and unsupervised learning and feed back and feed forward connections.
3.4.1 Networks Based on Supervised and Unsupervised Learning
An important aspect of an artificial neural network model is whether it needs guidance in learning or not. Based on the way they learn, all artificial neural networks can be divided into two learning categories - supervised and unsupervised.

(a) Supervised Learning
The vast majority of artificial neural network solutions have been trained with supervision. In this mode, the actual output of a neural network is compared to the desired output. Weights, which are usually randomly set to begin with, are then adjusted by the network so that the next iteration, or cycle, will produce a closer match between the desired and the actual output. The learning method tries to minimize the current errors of all processing elements. This global error reduction is created over time by continuously modifying the input weights until acceptable network accuracy is reached.

With supervised learning, the artificial neural network must be trained before it becomes useful. Training consists of presenting input and output data to the network. This data is often referred to as the training set. That is, for each input set provided to the system, the corresponding desired output set is provided as well. In most applications, actual data must be used. This training phase can consume a lot of time. In prototype systems, with inadequate processing power, learning can take weeks. This training is considered complete when the neural network reaches an user defined performance level. This level signifies that the network has achieved the desired statistical accuracy as it produces the required outputs for a given sequence of inputs. When no further learning is necessary, the weights are typically frozen for the application. Some network types allow continual training, at a much slower rate, while in operation. This helps a network to adapt to gradually changing conditions.

Training sets need to be fairly large to contain all the needed information if the network is to learn the features and relationships that are important. Not only do the sets have to be large but the training sessions must include a wide variety of data. If the network is trained just one example at a time, all the weights set so meticulously for one fact could be drastically altered in learning the next fact. The previous facts could be forgotten in learning something new. As a result, the system has to learn everything together, finding the best weight settings for the total set of facts. For example, in teaching a system to recognize pixel patterns for the ten digits, if there were twenty examples of each digit, all the examples of the digit seven should not be presented at the same time.
(b)Unsupervised Learning

Unsupervised learning is the great promise of the future. Currently, this learning method is limited to networks known as self-organizing maps. These kinds of networks are not in widespread use. They are basically an academic novelty. Yet, they have shown they can provide a solution in a few instances, proving that their promise is not groundless. They have been proven to be more effective than many algorithmic techniques for numerical aerodynamic flow calculations. They are also being used in the lab where they are split into a front-end network that recognizes short, phoneme-like fragments of speech which are then passed on to a back-end network. The second artificial network recognizes these strings of fragments as words.

This promising field of unsupervised learning is sometimes called self-supervised learning. These networks use no external influences to adjust their weights. Instead, they internally monitor their performance. These networks look for regularities or trends in the input signals, and makes adaptations according to the function of the network. Even without being told whether it's right or wrong, the network still must have some information about how to organize itself. This information is built into the network topology and learning rules. An unsupervised learning algorithm might emphasize cooperation among clusters of processing elements. In such a scheme, the clusters would work together. If some external input activated any node in the cluster, the cluster's activity as a whole could be increased. Likewise, if external input to nodes in the cluster was decreased, that could have an inhibitory effect on the entire cluster.

Competition between processing elements could also form a basis for learning. Training of competitive clusters could amplify the responses of specific groups to specific stimuli. As such, it would associate those groups with each other and with a specific appropriate response. Normally, when competition for learning is in effect, only the weights belonging to the winning processing element will be updated.

3.5 Back Propagation Learning Algorithm
3.5.1 The Structure of Back Propagation Networks
The basic back propagation algorithm in Figure 3.3 consists of three steps. The input pattern is presented to the input layer of the network. These inputs are propagated through the network until they reach the output units. This forward pass produces the actual or predicted output pattern. Because back propagation is a supervised learning algorithm, the desired outputs are given as part of the training vector.

[image: image13.png]Learn Rate / e
Momentum Error Tolerance

Adjust Weights using Error
(Desired-Actual)

NV e
%’t{ .Xlé . Actual Specific
SO — i —

LS)

 Figure 3.3 Back Propagation Network

The actual network outputs are subtracted from the desired outputs and an error signal is produced. This error signal is then the basis for the back propagation step, whereby the errors are passed back through the neural network by computing the contribution of each hidden processing unit and deriving the corresponding adjustment needed to produce the correct output. The connection weights are then adjusted and the neural network has just “learned” from an experience.

Two major learning parameters are used to control the training process of a back propagation network. The learn rate is used to specify whether the neural network is going to make major adjustments after each learning trial or if it is only going to make minor adjustments. Momentum is used to control possible oscillations in the weights, which could be caused by alternately signed error signals. While most commercial back propagation tools provide anywhere from 1 to 10 or more parameters for you to set, these two will usually produce the most impact on the neural network training time and performance.
3.5.2 Back Propagation Learning Algorithm
Artificial neural networks are able to solve difficult problems in a way that resembles human intelligence. What is unique about neural networks is their ability to learn by example. Traditional artificial intelligence (AI) solutions rely on symbolic processing of the data, an approach which requires a priori human knowledge about the problem.

As artificial neural networks are models of biological neural structures, the starting point for any kind of neural network analysis is a model neuron whose behavior follows closely our understanding of how real neurons work. This model neural network is shown in Figure 3.4.

 Figure 3.4 Model of Neural Structure
The neuron has N input lines and a single output. Each input signal is weighted, that is, it is multiplied with the weight value of the corresponding input line (by analogy to the synaptic strength of the connections of real neurons). The neuron will combine these weighted inputs by forming their sum and, with reference to a threshold value and activation function; it will determine its output.

3.5.3 The Activation Function

The input to the neuron is obtained as the weighted sum given by equation 3.1.

[image: image14.png]Gutput value

f

0.g
I

Transser function
/(1+Exp[-su))

Tnput valve

(3.1)

In Figure 3.5, F is the activation function, which has a sigmoid form. Sigmoid activation function is shown in Figure 3.6.

The simplicity of the derivative of the sigmoid function justifies its popularity and use as an activation function in training algorithms. With a sigmoid activation function, the output of the neuron is given by equation 3.2 and equation 3.3.

out = F(n)

(3.2)

F(n) =
[image: image2.wmf]))

exp(

1

(

1

n

-

+

(3.3)

[image: image3]
 Figure 3.5 Artificial Neuron.

The derivative of the sigmoid function can be obtained as follows Equation 3.4:

[image: image4.wmf]))

(

1

(

*

)

(

)

1

(

*

)

(

n

F

n

F

out

out

n

n

F

-

=

-

=

¶

¶

(3.4)

 Figure 3.6 Sigmoid Activation Function.

3.5.4 Feed Forward Calculation

Normalization of the input data prior to training is necessary. The values of the input data into the input layer must be in the range (0 - 1). The stages of the feed forward calculations can be described according to the layers. The suffixes i, h and j are used for input, hidden and output respectively.
a)Input Layer (i)

Figure 3.7 shows a neuron in the input layer. The output of each input layer neuron is exactly equal to the normalized input.

input layer output = Oi = Ii

 (3.5)

[image: image5]
 Figure 3.7 An Input Layer Neuron.

b)Hidden Layer (h)
Figure 3.8 describes a neuron in the hidden layer. The signal presented to a neuron in the hidden layer is equal to the sum of all the outputs of the input layer neurons multiplied by their associated connection weights, as in equation 3.6.

hidden layer input = Ih =
[image: image6.wmf]å

i

i

hi

O

W

(3.6)

Each output of a hidden neuron is calculated using the sigmoid function. This is described in equation 3.7.

hidden layer output = Oh =
[image: image7.wmf])

exp(

1

1

h

I

-

+

(3.7)

[image: image8]
 Figure 3.8 A Hidden Layer Neuron.

C) Output Layer (j)

Figure 3.9 describes a neuron in the output layer. The signal presented to a neuron in the output layer is equal to the sum of all the outputs of the hidden layer neurons multiplied by their associated connection weights plus the bias weights at each neuron, as in equation 3.8.

Output layer input = Ij =
[image: image9.wmf]å

h

h

jh

O

W

 (3.8)

Each output of an output neuron is calculated using the sigmoid function in a similar manner as in the hidden layer. This is described in equation 3.9.

output layer output = Oj =
[image: image10.wmf])

exp(

1

1

j

I

-

+

 (3.9)

Figure 3.9 A Output Layer Neuron.
d) Error Back Propagation Calculation

The error back propagation calculations are applied only during the training of the neural network. The vital elements in these calculations are the error signal, learning rate, momentum factor, and weight adjustment.
e)Signal error

During the network training, the feed forward output state calculation is combined with backward error propagation and weight adjustment calculations that represent the network's learning. Central to the concept of training a neural network is the definition of network error. Rumelhart and McClelland define an error term that depends on the difference between the output values an output neuron is supposed to have, called the target value Tj, and the value it actually has as a result of the feed forward calculations, Oj. The error term represents a measure of how well a network is training on a particular training set.

Equation 3.10 presents the definitions for the error. The subscript p denotes what the value is for a given pattern.

[image: image11.wmf]å

=

-

=

j

r

j

Pj

Pj

P

O

T

E

1

2

)

(

 (3.10)

The aim of the training process is to minimize this error over all training patterns. From Equation 3.9, it can be seen that the output of a neuron in the output layer is a function of its input, or Oj = f(Ij). The first derivative of this function, f'(Ij) is an important element in error back propagation. For output layer neurons, a quantity called the error signal is represented by Δj which is defined in equation 3.11.

Δj = f '(Ij) (Tj – Oj) = (Tj – Oj)Oj (1 – Oj)

 (3.11)

This error value is propagated back and appropriate weight adjustments are performed. This is done by accumulating the Δ's for each neuron for the entire training set, add them, and propagate back the error based on the grand total Δ. This is called batch (epoch) training.
f) Learning Rate and Momentum Factor

There are two essential parameters that do affect the learning capability of the neural network. First, the learning coefficient (which defines the learning 'power' of a neural network. Second, the momentum factor (which defines the speed at which the neural network learns. This can be adjusted to a certain value in order to prevent the neural network from getting caught in what is called local energy minima. Both rates can have a value between 0 and 1.
g) Weight Adjustment

Each weight has to be set to an initial value. Random initialization is usually performed. Weight adjustment is performed in stages, starting at the end of the feed forward phase, and going backward to the inputs of the hidden layer.
h) Output Layer Weights Update

The weights that feed the output layer (Wjh) are updated using Equation 3.12. This also includes the bias weights at the output layer neurons. However, in order to avoid the risk of the neural network getting caught in local minima, the momentum term can be added as in Equation 3.13.

Wjh (new) = Wjh (old) + (ΔjOh

 (3.12)

Wjh (new) = Wjh (old) + (ΔjOh + ([(Wjh (old)]

(3.13)
Where (Wjh (old) stands for the previous weight change.
i) Hidden Layer Weights Update

The error term for an output layer is defined in Equation 3.11. For the hidden layer, it is not as simple to figure out a definition for the error term. However, a definition by Rumelhart and McClelland describes the error term for a hidden neuron as in Equation 3.14 and, subsequently, in Equation 3.15.

Δh = f '(Ih)

(3.14)

Δh = Oh (1 – Oh)

(3.15)

The weight adjustments for the connections feeding the hidden layer from the input layer are now calculated in a similar manner to those feeding the output layer. These adjustments are calculated using Equation 3.16.

Whi (new) = Whi (old) + (Δh Oi + ([(Whi (old)]

(3.16)

The bias weights at the hidden layer neurons are updated, similarly, using equation 3.16.
3.6 Summary

In this chapter the following was discussed: Perception algorithm, supervised and unsupervised algorithms, neural network definition, some history of the neural network, natural neuron, artificial neuron, the back propagation algorithm and their models, learning processes and their tasks, and the activation function.

Output Oj

Output layer

layerlayer Ij

Output neuron

Output Oh

Input Ih

Hidden neuron

Output Oi

Input Ii

Input neuron

Out=F(n)

n

Pr

P2

P1

F

Σ

(

Y

W1

W2

Wn

Xn

X2

X1

Σ

Input 1

Input 2

Input N

Threshold θ

Output

Sigmoid

Weight

WN

Weight

W2

Weight

W1

Σ

PAGE
54

_1166245078.unknown

_1166246059.unknown

_1166246175.unknown

_1166328375.unknown

_1166245200.unknown

_1166243610.unknown

_1166243732.unknown

_1166243373.unknown

